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Abstract
To achieve a quantitative agreement of experimental data with theoretical predic-

tions, in classical nucleation theory a curvature‐ or size‐dependence of the surface

tension of critical clusters has to be accounted for. For its description, frequently

the Tolman equation is chosen. Tolman derived his relation originally in applica-

tion to droplets or bubbles in one‐component fluids assuming that nucleation is

caused by variations of pressure. As shown here his approach and the resulting

basic relations are applicable also to the description of crystal nucleation in multi‐
component fluids if either pressure or temperature is changed. Estimates of the

Tolman parameter in application to crystallization are advanced for both the men-

tioned cases. The Tolman parameter is shown to depend on the surface tension

for a planar interface, the number of components in the liquid, the bulk properties

of both the liquid and crystal phases, and the way the metastable state is gener-

ated. In addition, we develop a method of improving the precision in the specifi-

cation of the curvature dependence of the surface tension in melt crystallization

going beyond the Tolman equation in its original form. The results are applied

successfully to the description of crystal nucleation in silicate glass‐forming

melts.
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1 | INTRODUCTION

The classical theory of nucleation and growth processes is
till now the major tool in the interpretation of experimental
data on the crystallization kinetics.1,2 In its thermodynamic
ingredients it is based on the theory of heterogeneous sys-
tems as developed by Josiah W. Gibbs.3 Following Gibbs’
method in the specification of the state parameters of the
critical crystal clusters they turn out to correspond widely
to the properties of the respective evolving macroscopic
phases. In line with such widely employed in classical

nucleation theory (CNT) approximation, the surface tension
between the melt and the critical crystallite can be identi-
fied with the respective value for a planar equilibrium
coexistence of the respective crystalline and liquid phases.
Latter assumption is commonly denoted in CNT as capil-
larity approximation.

Utilizing these ideas, one can attempt to interpret the
experimental steady state nucleation rate data in terms of
CNT via the so‐called “nucleation plot”. As it turns out
the mentioned assumptions lead to severe problems in
the theoretical description reviewed in detail in.1,2,4 For
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this reason, an alternative approach has been advanced
by us based on a generalization of Gibbs’ classical treat-
ment going beyond these simple approximations.1,5,6 It
accounts appropriately for possible differences of both
bulk and surface properties of critical clusters as com-
pared to the respective macroscopic phases. This
approach requires, however, much more information con-
cerning the systems under consideration. In the absence
of such comprehensive information or as a first estimate,
CNT will remain a valuable tool for the prediction of
nucleation rate data if properly treated. In the present
paper we consider possible methods to reach an as high
as possible accuracy in the theoretical description
employing the basic assumptions of CNT.

If one assumes the validity of Gibbs’ classical treatment
in the description of thermodynamically heterogeneous sys-
tems, the major tool to resolve mentioned problems con-
sists in the introduction of a size‐ or curvature‐dependence
of the surface tension. Such approach was originally sug-
gested already by Gibbs3 and then extended by many
others. Utilizing Gibbs’ theory, the curvature dependence
of the surface tension, σ(R), is determined by the differen-
tial equation,3,7–10
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This relation is a direct consequence of Gibbs’ equilib-
rium conditions and Gibbs’ adsorption equation, details of
its derivation will be given below. Its solution depends on
the function δ(R), its value, δ∞ = δ(R → ∞), in the limit
of large critical cluster sizes (R → ∞) is denoted as Tol-
man parameter. It is one of the essential parameters which
can be defined for equilibrium coexistence of both phases
at a planar interface realized for the given melting or liq-
uidus temperature, Tm, at the melting pressure, pm. The
Tolman parameter is, in general, a function of Tm and pm,
ie, δ∞ = δ∞(Tm, pm).

In above equation, R is the size of the critical cluster
(assumed to be of spherical shape with a radius, R,
where the surface of tension3 is chosen as the dividing
surface), σ(R) is the surface tension for a cluster of criti-
cal size for this particular dividing surface. By Re, the
radius of the equimolecular dividing surface3 is denoted.
It is also located inside the inhomogeneous region
between liquid and crystalline phases. By this reason, the
absolute value of δ∞ has to be less than the width of
the inhomogeneous region between liquid and crystal.
Finally, σ∞ = σ(Tm, pm) is the value of the surface ten-
sion for an equilibrium coexistence of both the phases at

a planar interface realized for the given melting or liq-
uidus temperature, Tm, at the melting pressure, pm. In
the further analysis, we will employ also expressions for
the surface tension, σ(T, p), at different values of temper-
ature, T, and pressure, p. At such conditions, equilibrium
between crystal and liquid can be realized only for crys-
tallites of finite size, R.

Based on above given general relations, a set of approx-
imate expressions can be derived for the curvature depen-
dence of surface tension employing different assumptions
concerning the function δ = δ(R).3,8–10 One of the equa-
tions widely utilized in the description of such size‐ or cur-
vature‐dependence of the surface tension is a relation
suggested by Tolman,7

σðRÞ ¼ σ1
1þ 2δ

R

; σ1 ¼ σðTm; pmÞ; δ ¼ δ1ðTm; pmÞ: (3)

As evident from above given derivation, the Tolman
equation is an approximation valid, as a rule, for small
deviations from thermodynamic equilibrium, only. In Tol-
man's approximation, the function, δ(R), is set equal to its
value for an equilibrium coexistence of both phases at a
planar interface, δ(R) = δ(R → ∞) = δ∞(Tm, pm). The
dependence of the surface tension on the size of the critical
cluster is then completely determined by this limiting value
of the Tolman parameter, δ = δ∞(Tm, pm). However, in
applications of this relation, frequently this original mean-
ing of the Tolman parameter is not accounted for dealing
with parameters δ having a quite different origin. The foun-
dation of such approach is one of the topics of the present
analysis.

Tolman's equation was developed originally by him for
the description of the surface tension of droplets and
widely employed both for the droplets and bubbles of crit-
ical sizes.7 In his analysis, one‐component systems are
studied and nucleation was assumed to be caused by vari-
ations of pressure. An overview on the advantages and
limitations of this relation in its application to condensa-
tion and boiling can be found in.8–13 In particular, it has
been shown8–10 that physically reasonable assumptions
concerning the shape of the function δ = δ(R) result in
dependencies for the function σ = σ(R) resembling Tol-
man's approximation.

Beyond its original implementation, the Tolman equa-
tion is widely applied also in the description of crystal-
lization of multicomponent liquids caused by variations
of temperature.1,14–17 The correctness of its wide use in
the description of melt crystallization is supported by the
following arguments: (a) a variety of experimental
data1,2,18–25 confirm (in agreement with the principle of
le Chatelier‐Braun26) that the surface tension decreases
with decreasing temperature ie, with an increase of the
degree of deviation from thermodynamic equilibrium; (b)
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a similar decrease of the surface tension with increase of
the degree of metastability of the liquid is observed for
pressure‐induced crystal nucleation27–30; (c) mentioned
conclusions from experimental results (a) and (b) are
reconfirmed by molecular dynamics simulations.31–35 In
addition, adapting the Stefan‐Skapski‐Turnbull rule,1,2 a
decrease of the surface tension with decreasing size of
the critical crystals can be also correlated with the
decrease of the melting enthalpy of small crystallites with
their size observed experimentally. Note also that in the
analysis of Sen and Mukerji,36 a decrease of the devia-
tions between CNT and experiment is de facto described
by a decrease of the surface tension with decreasing size
of the critical crystallites. Consequently, utilizing the Tol-
man‐equation for the description of melt crystallization
with a positive value of the Tolman parameter, δ∞, can
be considered as a quite prospective approach in recon-
ciling experiment and theory.

Following the above considerations, Tolman's equa-
tion was employed by some of us in order to describe
the steady state nucleation rate in a variety of silicate
glass‐forming melts4,16,17 taking both the surface tension
for planar interfaces and the Tolman parameter, δ, in
Equation 3 as fit parameters. In such approach a good
agreement can be reached between theory and experiment
from the melting or liquidus temperature down to
temperatures near to the maximum of the steady state
nucleation rate. For lower temperatures, additional factors
have to be accounted for in the theoretical description of
crystal nucleation employing assumptions going beyond
CNT (for details see4–6,16,17 and also recent molecular
dynamics simulations37). Latter problems are not consid-
ered here.

The above described method (achievement of a quan-
titative agreement of CNT with experimental data consid-
ering both σ∞ and δ in Equation 3 as fit parameters) can
be further developed based on a generalization of the
Stefan‐Skapski‐Turnbull relation valid in its standard form
exclusively for liquid‐crystal equilibrium at planar inter-
faces.1,2 This generalization, derived by some of us,28–30

results in approximative dependencies for the surface ten-
sion as a function of temperature and/or pressure. Simi-
larly to the Tolman equation, these relations hold for
small and even moderate deviations from equilibrium. As
will be shown here, they allow one to express the Tol-
man parameter based on the knowledge of the surface
tension for a planar equilibrium coexistence of liquid and
crystal and the bulk properties of the liquid and the
evolving crystal at these equilibrium states. In this way,
the number of fit parameters in the theoretical description
of crystal nucleation is reduced by one. Such reduction
is of high significance in treating crystal nucleation not
only for the systems discussed by us earlier in4,16,17 but

in general. The derivation of such relations for the speci-
fication of the Tolman parameter, their application, gener-
alization, and discussion are the main aims of the present
contribution.

In order to realize such task, we have to solve the
following problems: (a) As mentioned, the study by Tol-
man is directed to one‐component systems and to the
description of condensation and boiling caused by the
variations of pressure. Consequently, the first question to
be answered is whether (or under which conditions) it
can be employed for the description of crystal nucleation
also for crystallization caused by variations of tempera-
ture and whether it can be utilized also for multicompo-
nent systems. We show that the Tolman equation holds
for the description of the curvature dependence of the
surface tension when either temperature or pressure are
changed leaving the composition of the liquid
unchanged. For both the cases estimates of the value of
the Tolman parameter, δ∞, are derived. (b) In the analy-
sis of condensation and boiling in one‐component fluids
it has been observed that the Tolman equation in its
original form is insufficient for a quantitatively correct
description of nucleation.8–13 Terms proportional to the
inverse of the radius of the critical cluster squared have
to included into the dependence σ = σ(R) to reach an
agreement of theory and experiment. The next question
is, consequently, why in application of Tolman's equa-
tion to crystallization a highly satisfactory agreement can
be reached. This problem will be solved by generalizing
the definition of the Tolman parameter. As will be
shown, actually in the fit of the Tolman parameter not
its original definition is adapted but a more general
expression where this parameter contains terms inversely
proportional to the size of the critical crystallite. (c)
Employing the Tolman equation, the critical crystal clus-
ters are considered to be of spherical shape with a radius
R. In reality, the shapes of the crystallites may deviate
from the spherical one and the equilibrium crystals are
of shapes described by the so‐called Wulff's rule or the
Gibbs‐Curie‐Wulff theorem.38–41 With respect to the
description of growth, such shape effects have to be
accounted for in detail to develop an appropriate descrip-
tion.41–44 However, as will be demonstrated here, in
nucleation the situation is simpler. Crystal nucleation can
be described with good accuracy employing the assump-
tion of a spherical shape and an effective surface ten-
sion.

The paper is structured as follows. In Section 2, we
demonstrate first why the critical crystal clusters can be
described in a good approximation by assuming a spherical
shape with a radius R and effective value of the surface
tension. It is shown then at which conditions the Tolman
equation can be employed for the description of the surface

SCHMELZER ET AL. | 59



tension of critical crystallites in terms of such model. Fur-
ther, we derive the basic expressions for the thermody-
namic driving force and the surface tension in the form
required for the determination of the Tolman parameter,
δ∞. In addition, the equations for the determination of this
parameter are established. The results are applied to the
interpretation of crystal nucleation in silicate glass‐forming
melts in Section 3. Based on an analysis of the results
obtained, a new method of description of the curvature
dependence of the surface tension in melt crystallization is
developed going beyond the Tolman equation in its origi-
nal form. A summary of the conclusions (Section 4) com-
pletes the paper.

2 | THEORY: BASIC EQUATIONS
AND RESULTS

2.1 | Real shape of critical crystallites and
different possibilities of their theoretical
description

Following the basic assumptions of CNT (critical crystal-
lites governing nucleation are treated as small objects hav-
ing widely the same properties as the respective
macroscopic samples) the shape of critical crystals is deter-
mined by the Gibbs‐Curie‐Wulff theorem.38–41 In most
applications of CNT to the interpretation of experimental
data, however, a simplified description is used assuming a
spherical shape with a radius, R. Here we demonstrate by
two different methods how such simplification of the
description can be theoretically founded.

As advanced in detail in,31,45 accounting for the Gibbs‐
Curie‐Wulff theorem the work of critical cluster formation,
Wc, of an equilibrium crystallite can be expressed, in gen-
eral, as

Wc ¼ 1
3

Z
σðAÞdA ¼ 1

3
∑iσiAi: (4)

In the first term in above equation, the integration has
to be performed over the surface of the crystallite with val-
ues of the surface tension depending on the point of the
surface considered. In the second term, σi are the values of
the surface tension for the different crystal faces with the
surface areas Ai. Above relation can be simplified by intro-
ducing an effective surface energy, σ, defining it as

σ ¼ 1
4πR2

Z
σðAÞdA ¼ 1

4πR2 ∑iσiAi: (5)

Here R is the radius of a sphere having the same vol-
ume as the equilibrium crystallite with a shape determined
by the Gibbs‐Curie‐Wulff theorem. The work of critical
cluster formation for a critical cluster of spherical shape is
then given by

Wc ¼ 1
3
σA; A ¼ 4πR2: (6)

Similar conclusions one can derive even in a simpler
way not relying on the Gibbs‐Curie‐Wulff theorem. We
only employ that the properties of the critical clusters are
determined by Gibbs’ equilibrium conditions. For a spheri-
cal critical cluster, we get

Tα ¼ Tβ ¼ T ; μiα ¼ μiβ ¼ μi; pα � pβ ¼ 2σ
R
: (7)

Here T is the temperature, p is the pressure, μi is the
chemical potentials of the different components,
i = 1, 2, …, k, where k is the number of components in
the system, the subscript α specifies the parameters of
the newly evolving phase and β the parameters of the
ambient phase. The bulk state parameters of the liquid
are assumed to be known. Equality of temperature and
chemical potentials of the different components determine
the bulk properties of the critical clusters. Consequently,
in Equation 7, only two quantities, σ and R, remain not
known.

However, for any given value of the work of critical
cluster formation governing nucleation in the system under
consideration, Equation 6 supplies us with an additional
equation for the determination of σ and R in terms of the
simplified model. Consequently, knowing the value of Wc,
the Young‐Laplace equation, pα − pβ = 2σ/R, determines
uniquely both the size of the critical cluster and the value
of its surface tension. Consequently, whatever the shape of
a real critical cluster is, one can always describe it by a
simplified model of a sphere with well‐defined by above
considerations values of the radius and the surface tension.

2.2 | Tolman equation and Tolman
parameter: some general considerations

For the analysis of the Tolman equation and the specifica-
tion of the Tolman parameter, in addition to the equilib-
rium conditions the Gibbs adsorption equation is required.
It reads in the general form3,46,47

SσdT þ Adσþ∑k
i¼1niσdμi ¼ 0: (8)

Here A is the surface area of a given surface element,
Sσ and niσ are the so‐called superficial entropy and particle
numbers assigned in the framework of Gibbs’ theory of
surface phenomena formally to the interface.

Gibbs and also Tolman considered phase formation in
one‐component fluids at some given temperature changing
the degree of deviation from equilibrium by variations of
pressure of the ambient phase. At such conditions, Equa-
tions 7 and 8 yield
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μαðpα; TÞ ¼ μβðpβ; TÞ; pα � pβ ¼ 2σ
R
; (9)

Adσþ nσdμβ ¼ 0 or Adσþ ðnσvβÞdpβ ¼ 0: (10)

Taking the differential of the two relations in Equation 9
accounting for constancy of temperature, we get

vαdpα ¼ vβdpβ; dpα � dpβ ¼ d
2σ
R

� �
: (11)

After some straightforward transformation, we obtain Equa-
tion 1 with the parameter δ given by

δ ¼ δðpÞ1 ¼ ðnσ=AÞ
ρα � ρβ

: (12)

In above relations, v is the volume per particle and
ρ = 1/v is the volume density of particles. This expression
for δ can then be reformulated in the form of Equation 2
as done by Tolman.7

Alternatively, we may vary temperature leaving the
pressure of the ambient phase, pβ, unchanged. For this
case, Equations 7 and 8 lead to the following relations

vαdpα ¼ ðsα � sβÞdT; dpα ¼ d
2σ
R

� �
; (13)

and

SσdT þ Adσþ nσdμβðT; pβÞ ¼ 0 (14)

or

ðSσ=AÞ � ðnσ=AÞsβ
� �

dT þ dσ ¼ 0; (15)

respectively. Here s is the entropy per particle in the bulk
of both phases, correspondingly. A combination of Equa-
tion 13 and 15 results in Equation 1, again, but this time
with a value of δ equal to

δ ¼ δðTÞ1 ¼ vα ðSσ=AÞ � ðnσ=AÞsβ
� �

sα � sβ
: (16)

Taking δ = δ(R → ∞) = δ∞ as constant, for both cases
the curvature dependence of the surface tension is
described by Tolman's approximative relation, Equation 3,
but with different values of the parameter δ∞.

As already mentioned and accounted for in above con-
siderations, the analysis of the curvature dependence of the
surface tension as performed by Gibbs and Tolman was
directed to one‐component systems. Here we would like to
show, now, that keeping the composition of the liquid con-
stant and varying either temperature or pressure, always the
curvature dependence of the surface tension of critical crys-
tallites is described by an equation of the form given by
Equation 1. Indeed, for a k‐component system, the

conditions of equality of temperature and chemical poten-
tials yield

μiαðT ;pα;x1;α;x2;α; . . . ;xk�1;αÞ¼ μiβðT;pβ;x1;β;x2;β; . . . ;xk�1;βÞ;
1¼ 1;2; . . . ;k:

(17)

At fixed values of temperature, this set of equations
determines the bulk state parameters of the cluster (pα, x1,α,
x2,α, …, xk−1,α) as a function of the state parameters of the
ambient phase, in our case, the liquid. We assume that, at
fixed values of temperature, the degree of deviation from
equilibrium is determined by variations of pressure keeping
the composition of the melt unchanged. Consequently,
Equation 17 supplies us with a linear relation
dpα ¼ γðpÞ1 dpβ similar to the first term in Equation 11.

With μi = μiβ (as always utilized also in the analysis of
the one‐component case), the Gibbs’ adsorption isotherm
(Equation 8 with T = constant) yields

dσþ dpβ∑k
i¼1

niσ
A

� � @μi
@pβ

¼ 0 (18)

or, similar to Equation 10, dσþ γðpÞ2 dpβ ¼ 0. A substitution
of the relations dpα ¼ γðpÞ1 dpβ and dσþ γðpÞ2 dpβ ¼ 0 into
the relation for pressure equilibrium in the differential form
(the second relation in Equation 11) results in Equation 1,
again, with

δ ¼ δðpÞk ¼ γðpÞ2

γðpÞ1 � 1
: (19)

Keeping now, again, the pressure constant and varying
the temperature, the equilibrium conditions, Equation 17,
determines the bulk state parameters of the cluster phase in
dependence on temperature and molar fractions of the liq-
uid. Since latter parameters are fixed, we obtain
dpα ¼ γðTÞ1 dT . The Gibbs’ adsorption equation, Equation 8,
yields

ðSσ=AÞdT þ dσþ dT∑k
i¼1

niσ
A

� � @μiβ
@T

¼ 0: (20)

This relation can be abbreviated as dσþ γðTÞ2 dT ¼ 0. With
the conditions for pressure equilibrium in differential form
(the second relation in Equation 13), we obtain Equation 1,
again, this time with

δ ¼ δðTÞk ¼ γðTÞ2

γðTÞ1

: (21)

In cases, when both the temperature (T = Tα = Tβ) and
pressure, pβ, of the liquid are varied, the curvature depen-
dence of the surface tension is determined by a combina-
tion of above derived equations. We obtain then
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dpα ¼ γðpÞ1 dpβ þ γðTÞ1 dT; (22)

dσþ γðpÞ2 dpβ þ ðSσ=AÞ þ γðTÞ2

� �
dT ¼ 0 ; (23)

dpα � dpβ ¼ d
2σ
R

� �
: (24)

According to Equation 23, the surface tension of a
critical crystallite can be considered as a function of
pressure and temperature of the liquid. Combining Equa-
tions 22 and 24, we can replace in Equation 23 either
pressure or temperature by the size of the critical crystal-
lite. Consequently, we can also state that in such cases
the surface tension depends either on temperature and the
size of the critical cluster or on pressure and the size of
the critical cluster. Only in the above discussed limiting
cases, when either pressure or temperature is fixed, the
surface tension becomes a function exclusively of its
size. Quantitatively, this size dependence is as a rule dif-
ferent for crystallization caused by either temperature or
pressure, but in both cases it can be described in such
limit by the formalism formulated originally by Gibbs
and Tolman.

Note that the method of variation of the degree of
deviation from equilibrium as employed by Gibbs and
Tolman in their studies of the curvature dependence of
the surface tension is not the way crystal nucleation is
initiated by cooling. By this reason, a reference to Tol-
man's original paper is strictly speaking misleading in
employing his relation for the description of crystal nucle-
ation caused by variations of temperature. Above given
analysis shows, however, that anyway the reference to
Tolman's relation is correct, but with another expression
for the Tolman parameter as compared to the one derived
in his paper. Moreover, it is shown here under which
conditions the Tolman equation can be employed also for
the description of phase formation in multi‐component
systems.

For the subsequent analysis, the following consequences
of above consideration are of basic importance: The curva-
ture dependence of the surface tension for crystal nucle-
ation in a multicomponent liquid can be described both for
variations of pressure and for variations of temperature by
a general relation of the form of Equation 1. For small
deviations from equilibrium (constant values of the Tolman
parameter) it can be described by Tolman's approximation
given by Equation 3. The value of the Tolman parameter
depends on the number of components present in the sys-
tem, on the properties of the liquid‐crystal interface, and on
the method how the system is transferred into the meta-
stable states.

2.3 | Dependence of thermodynamic driving
force and surface tension on pressure and
temperature

A method to determine the Tolman parameter to describe
the curvature dependence of the surface tension for critical
crystals in multicomponent liquids for crystallization
caused by variations of either temperature or pressure is
developed in the subsequent sections. In line with Tolman's
original treatment,7 first, we determine here the Tolman
parameter, δ, for large critical cluster sizes (δ(R → ∞) =
δ∞), ie, we restrict ourselves to metastable states of the
liquid (p, T) at small deviations from thermodynamic equi-
librium (pm, Tm). In such cases, the basic assumptions of
CNT are fulfilled6,48 and the state parameters of the critical
clusters are obtained by the equilibrium conditions (Equa-
tion 7, equality of temperature and chemical potentials, ful-
fillment of the Young‐Laplace equation) as developed by
Gibbs in his classical treatment of interfacial phenomena.3

In particular, the radius, R, of the critical cluster (referred
to the surface of tension, again) can be expressed at such
conditions in a good approximation as1,6,48

R ¼ 2σ
Δgðp; TÞ : (25)

Here Δg is the difference of Gibbs’ free energy per unit
volume between liquid and crystal both taken at the same
pressure and temperature and σ is the surface tension for
the chosen dividing surface. For the considered case of
small deviations from equilibrium, the thermodynamic driv-
ing force as a function of undercooling is given by the
Tammann‐Meissner‐Rie equation5,48

ΔgðTÞ≅Δhm
Tm � T
Tm

� �
; Δhm ¼ ΔhðTm; pmÞ ¼ TmΔsm:

(26)

Here Δhm > 0 is the melting enthalpy per unit volume of
the crystal phase and Δsm the respective melting entropy,

Δsm ¼ ΔsðTm; pmÞ;

ΔsðT ; pÞ ¼ SlðT ; p; fxilgÞ � ScðT; p; fxicgÞ
VcðT; p; fxicgÞ

: (27)

In Equation 27, Sl and Sc are the entropies of the liquid
and the crystal for a given volume of the crystal phase, Vc,
and xil and xic are the molar fractions of the different com-
ponents in the liquid and the crystal. Similarly, we can
write for pressure‐induced nucleation29

ΔgðpÞ ≅ pmΔvm
p� pm
pm

� �
; (28)
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Δvm ¼ ΔvðTm; pmÞ;

ΔvðT ; pÞ ¼ VlðT; p; fxilgÞ � VcðT ; p; fxicgÞ
VcðT ; p; fxicgÞ ;

where Vl and Vc are the volumes of a certain amount of the
material in the liquid (l) and crystalline (c) states.

As shown in,28–30 the dependence of the surface tension
of critical clusters on pressure and temperature can be
expressed for small deviations from equilibrium as

σðT ; pÞ
σðTm; pmÞ
≅

T
Tm

1� γTðTm; pmÞ
Tm � T
Tm

� ΔαpðTm; pmÞ
Δsm

ðp� pmÞ
� � ;

(29)

γTðT; pÞ ¼
ΔcpðT ; pÞ
ΔsðT; pÞ ; Cp ¼ T

@S
@T

� �
p
;

αp ¼ 1
V

@V
@T

� �
p
:

In Equation 29, Δcp is the difference between the specific
heats per unit volume of the liquid and the crystal and Δαp
the difference between the isobaric thermal expansion coeffi-
cients of both phases. While in Equations 1 and 3 deviations
from equilibrium are reflected by the cluster radius, resulting
in the dependence σ = σ(R), in Equation 29 the dependence
of σ on the degree of deviations from equilibrium is
expressed directly. On the other hand, the critical cluster size
is uniquely determined as a function of the degree of devia-
tion from equilibrium via the equilibrium conditions for clus-
ters of finite size. By this reason, Equations 1 and 3,
respectively, Equation 29 is equivalent as far as either tem-
perature or pressure are fixed. In such cases, the surface ten-
sion can be treated either as a function of cluster size,
respectively, of temperature or pressure. In the general cases,
when both temperature and pressure are varied, the particular
formalism for description of the curvature dependence of the
surface tension as advanced by Gibbs and Tolman and the
resulting from them equations do not hold any more
(cf.18,49). Instead, Equations 22–24 have to be employed for
the analysis. Having, for the considered limiting cases of
either constant pressure or constant temperature, at our dis-
posal different equivalent relations for the surface tension,
we can easily determine the Tolman parameter for crystal-
lization induced either by undercooling or by pressure varia-
tions as demonstrated in the following section.

2.4 | Determination of the Tolman parameter

To determine the Tolman parameter, δ = δ∞ = δ(R → ∞),
we rewrite Equation 3 in the form

δ1 ¼ R
2

σ1
σ

� 1
� �

¼ R
2σ

σ1 1� σ
σ1

� �
¼ σ1

Δg
1� σ

σ1

� �
:

(30)

In this relation, we substitute Δg and σ/σ∞ employing
Equations 26, 28, and 29 taking the limit T → Tm and p →
pm, respectively, for the both considered cases. At a
decrease of temperature, T, at constant pressure, p = pm,
we arrive at

δðTÞ1 ≅σ1
γTðTm;pmÞ

Δhm
¼ σ1

TmΔcpðTm;pmÞ
ðΔhmÞ2

at p¼pm:

(31)

Varying pressure, p, at constant temperature, T = Tm, we
obtain instead the relation

δðpÞ1 ≅σ1
ΔαpðTm;pmÞ
ΔvmΔsm

¼ σ1
TmΔαpðTm;pmÞ

ΔvmΔhm
at T¼Tm:

(32)

In both cases, the Tolman parameter is determined by the
surface tension for a planar equilibrium liquid‐crystal inter-
face and a combination of bulk properties of liquid and
crystal in such states.

3 | RESULTS AND DISCUSSION

3.1 | Interpretation of experimental data

As already mentioned, experimental data on the steady
state nucleation rate for different glass‐forming systems
were described in4,16,17 in terms of CNT utilizing the Tol-
man equation, Equation 3, for the description of the cur-
vature dependence of the surface tension. In this
approach, σ∞ and δ were taken as fit parameters. On the
other hand, utilizing Equation 31 we can now try to
describe the experimental data by identifying δ with
δ = δ∞ and employing, in this way, only one fit parame-
ter, σ∞. The respective fit of experimental data was per-
formed to yield the same values for the maximum of the
steady state nucleation rate (its location and magnitude) as
obtained in experiment and described theoretically by the
method used in.4,16,17 The parameters δ, obtained as
described as fit parameters via Equation 3, and δ∞, com-
puted via Equation 31, are shown for several glass‐form-
ing melts in the fourth and seventh columns of Table 1.
Here d0 is an effective size parameter of the structural
units of the liquid, which is commonly estimated via the
molar volume, vm, and the Avogadro number, NA, as
d0 ≅ (vm/NA)

1/3. As it turns out, the values of δ and δ∞
are near to each other but, anyway, they are different.
Consequently, the question arises, how such deviations
can be explained.
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As discussed in the introduction of the present paper,
Tolman's approximation, Equation 3, applies only for small
deviations from equilibrium. On the other hand, intensive
nucleation requires sufficiently large deviations from equi-
librium1,6 since only at such conditions the work of critical
cluster formation becomes sufficiently small to allow a
stochastic generation of critical clusters at a measurable
rate. However, at such sufficiently large supersaturation,
the Tolman equation does not describe as a rule the curva-
ture dependence of the surface tension with an accuracy
sufficient for the description of nucleation.

Indeed, as demonstrated in a variety of studies of con-
densation and boiling, an appropriate description of the
curvature dependence of the surface tension in the analysis
of nucleation of droplets and bubbles requires an extension
of the Tolman equation. Such generalization can be written
in the form (see12,13 and references cited therein)

σðRÞ ¼ σ1
1þ 2δ1

R þ l1
R

� 	2þ � � �
: (33)

The parameters δ∞ and l∞ in Equation 33 are deter-
mined via the properties of the interface in the limit of van-
ishing curvature and the method the degree of deviation
from equilibrium is changed.

Equation 33 can be rewritten as

σðRÞ ¼ σ1
1þ 2δ

R

; δ ¼ δ1 1þ l21
2δ1R

þ � � �
� �

; (34)

resulting in a relation formally identical to Equation 3.
However, as it is evident, now, the parameter δ has to be
treated as a function of the critical cluster size. Conse-
quently, the differences between δ and δ∞ in Table 1 can
be interpreted easily based on Equation 34: Using Equa-
tion 3 for the interpretation of experimental data with two

fit parameters σ∞ and δ, actually not Tolman's equation but
its generalization given by Equation 33 or Equation 34 was
employed and not Tolman's original approximation where
δ has to be identified with its respective value for a planar
interface. The parameter δ in Equation 34 coincides with
δ∞ in the limit R → ∞ but increases with decreasing val-
ues of R.

Utilizing, now, Equation 34 and assuming δ∞ given by
Equation 31, by a similar fit of experimental data we can
again obtain values for σ∞ and l∞ given in the fifth and
ninth columns of Table 1. In addition, it is shown there
which values have to be assigned to the parameter χ in the
Stefan‐Skapski‐Turnbull relation1

σ1 ¼ χ
ΔHðmolÞ

m

N1=3
A v2=3mol

(35)

in order to yield an identity. In the commonly employed
form, Equation 35, of latter relation, ΔHðmolÞ

m is the molar
heat of melting, vmol is the molar volume, and NA is the
Avogadro number. In our notations (with d0 ≅ (vm/NA)

1/3),
this relation reads σ∞ = χd0Δhm.28

As an illustration of our results and the general situation
one has to deal with in the theoretical description of melt
crystallization, Figure 1 shows a comparison of experimen-
tal data (♢ ♢ ♢) with theoretical predictions for one glass‐
forming melt (2Na2O·1CaO·3SiO2; for details see4,16,17).
The green curve (1) results from a fit of the steady state
nucleation rate utilizing Equation 3 and the data for σ∞
and δ as given in the second and fourth columns of
Table 1. The light‐blue curve (2) is obtained for δ = δ∞
and l∞ = 0, ie, it is a consequence of the Tolman equa-
tion in its original form. It is evident that Tolman's original
equation does not supply us with a sufficiently correct fit
of the experimental data. The dark‐blue curve (3) is

Glass

References4,16,17 Approach employed in the present paper

σ1 J
m2

� �
d0 (nm) δ

d0
σ1 J

m2

� �
χ ¼ σ1

d0Δhm
δ1
d0

l1
d0

(fit) l1
d0

1N1C2S 0.243 0.588 1.15 0.200 0.510 0.666 0.680 0.815

1N2C3S 0.235 0.588 1.1 0.197 0.502 0.655 0.660 0.802

2N1C3S 0.225 0.599 1.7 0.169 0.610 0.827 0.900 0.945

L2S 0.238 0.480 0.445 0.238 0.541 0.448 0.090 1.107

B2S 0.196 0.496 1.04 0.187 0.792 0.878 0.480 1.414

σ∞ and δ in the second and fourth columns, respectively, are obtained in4,16,17 as fit parameters to experimental
data on steady state nucleation rates utilizing Equation 3 for the curvature dependence of the surface tension. In
the approach employed here, δ∞ is determined via Equation 31. The respective data are given in the seventh col-
umn. Utilizing these results and Equation 34, σ∞ (fifth column) and l∞ (eights column) are obtained by a similar
fitting procedure. Finally, in the ninth column, the values of l∞ obtained via Equation 39 are presented. The
parameters are computed for 22.4Na2O·28.0CaO·49.6SiO2 (1N1C2S),53 Na2O·2CaO·3SiO2 (1N2C3S),54–56

2Na2O·1CaO·3SiO2 (2N1C3S),52 Li2O·2SiO2 (L2S),57 BaO·2SiO2 (B2S).58 The data required for the calculations
are taken from cited papers.

TABLE 1 Parameters of crystal
nucleation rates obtained in different
ways as described in detail in the text
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obtained by employing the value of δ∞ computed via
Equation 31 and taking σ∞ and l∞ in Equation 34 as fit
parameters (columns 5 and 9 of Table 1). It describes the
steady state nucleation rate with a similar precision as
curve (1) down to temperatures corresponding to the maxi-
mum of the steady state nucleation rate. It is also evident
that below the maximum of the steady state nucleation rate
other mechanisms beyond CNT have to be accounted for
to arrive at a satisfactory agreement between theory and
experiment. An account of such additional factors results in
the magenta curve (4) supplying us with an appropriate
description of the steady state nucleation rate in the whole
range of temperatures where crystal nucleation is observed
(for details see,4,16,17 again).

3.2 | Extension of the analytical description
of the curvature dependence of the surface
tension

In Section 3.1, l∞ was determined by a fitting procedure.
Here we would like to obtain an analytical estimate for this
parameter similarly to the estimation of δ∞ given by Equa-
tion 31. This can be done in the following way.

So far, we have identified Equations 3 and 29 in the
limit of minor deviations from equilibrium to determine the
Tolman parameter, δ∞. Having completed this task, we can
also derive estimates for the second parameter, l∞, assum-
ing identity of both relations, Equations 3 and 29, near to
the maximum of the steady state nucleation rate. Since the
maxima of the steady state nucleation rate in dependence
on temperature are as a rule correlated with the glass transi-
tion temperature, we will perform here this identification
assuming, for crystal nucleation caused by a decrease of
temperature, T = (2/3)Tm, as observed as a rule for silicate
glass‐forming melts.1

The parameter l∞ can be expressed according to Equa-
tion 34 via

l1 ¼ 2σ
Δg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1
σ

� 1þ δ1
Δg
σ

� �s
: (36)

At the considered conditions, we have to set here (employ-
ing Equation 29)

σ
σ1

¼ 2
3

1� Δcp
3Δsm

� �
; (37)

and δ∞ is given by Equation 31.
Utilizing again the Tammann‐Meissner‐Rie equation,

Equation 26, for the specification of the thermodynamic
driving force (more correct expressions as given in1,29,48

yield only small modifications), we obtain

Δg T ¼ 2
3
Tm

� �
¼ Δhm

3
: (38)

As an estimate of the parameter lðTÞ1 describing the correc-
tions to the Tolman equation for nucleation caused by tem-
perature variations, we get

lðTÞ1 ¼ 2
ffiffiffi
2

p σ1
Δhm

1� Δcp
3Δsm

� �
: (39)

The values of the parameter l∞ computed via Equation 39
are given in the ninth column of Table 1.

Consequently, Equations 31 and 39 supply us with the
values of δ∞ and l∞ required to describe the curvature
dependence of the surface tension for crystal nucleation
caused by variations of temperature, Equations 33 and 34.
To predict the steady state nucleation rate in dependence
on temperature, the surface tension for a planar equilibrium
coexistence of liquid and crystal is the only parameter
which has to be specified either as a fit parameter or has to
be determined by independent from the considered
approach methods. In this respect, the method is similar to
the standard procedure in CNT, when the capillarity
approximation is employed for the description of crystal
nucleation. However, by the developed here approach, the
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FIGURE 1 Comparison of experimental data (♢ ♢ ♢) with
theoretical predictions for the steady state nucleation rate of glass‐
forming melts taking 2Na2O·1CaO·3SiO2

52 as an example. Similar
results are obtained generally, in particular, for all systems included
here into Table 1. The green curve (1) results from a fit of the steady
state nucleation rate utilizing Equation 3 and the data for σ∞ and δ as
given in the second and fourth columns of Table 1. The light‐blue
curve (2) is obtained setting δ = δ∞ and l∞ = 0 employing the
Tolman equation in its original form. The dark‐blue curve (3) is
obtained by employing δ∞ computed via Equation 31 and taking σ∞
and l∞ in Equation 34 as fit parameters (columns 5 and 9). An
account of additional factors beyond CNT affecting the nucleation
rate, in particular, in the temperature range below the maximum of
the steady state nucleation rate results in the magenta curve (4) (for
the details see,4,16,17 again) [Color figure can be viewed at wile
yonlinelibrary.com]
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precision in the theoretical description of the nucleation
rate data can be considerably increased. Similarly, we can
proceed for crystal nucleation induced by pressure variation
utilizing conditions for the extremum of pressure‐induced
nucleation rates discussed by some of us in.50,51

3.3 | Summary of the results

In earlier investigations it was shown that steady state
nucleation rates of crystallites in a variety of systems can
be described by employing the Tolman equation. Here we
advance considerably this approach by showing (a) that the
Tolman equation correctly describes the dependence of the
surface tension on supersaturation not only in one‐compo-
nent (analyzed by Tolman) but also in multicomponent sys-
tems for both temperature and pressure induced
crystallization provided the composition of the melt is kept
constant. In this way, we give an explanation why (and,
more generally, at which conditions) the Tolman equa-
tion can be employed; (b) estimates of the Tolman parame-
ters in its original definition are given for both cases of
crystallization of multicomponent systems initiated by vari-
ations of temperature or pressure; (c) it is shown that in the
fit of nucleation rate data via the Tolman equation actually
not the Tolman equation in its original form is utilized but
a generalization as described by us. The Tolman parameter
has in such procedure a different meaning; (d) it is shown
by us that the fit parameter is actually a combination of the
Tolman parameter in its original definition and a correction
term; (e) the value of the correction term is also deter-
mined.

4 | CONCLUSIONS

To appropriately describe the steady state nucleation rate
employing the basic assumptions of CNT, a size‐ or curva-
ture‐dependence of the surface tension has to be incorpo-
rated into the description. Employing for such purposes
Equation 3 with a value of the parameter δ = δ∞ equal to
its value for the limit of vanishing curvature of the inter-
face liquid crystal as proposed by Tolman is not sufficient
for a correct description of crystal nucleation data. A simi-
lar conclusion was drawn earlier also with respect to the
applicability of the Tolman relation to the description of
nucleation in condensation and boiling. This failure of the
Tolman equation in its original form is connected with the
fact that nucleation takes place with measurable rates only
at sufficiently large supersaturation, where the Tolman
equation already does not hold with a sufficient degree of
accuracy.

However, not assigning to δ the value δ = δ∞ but treat-
ing it as a fit parameter, a good agreement between theory

and experiment can be reached. As shown here, such result
is a consequence of the fact that, in such approach, actually
not the Tolman equation but a more general relation, Equa-
tion 33, is utilized. Such more general relation has been
shown earlier to allow one an accurate description of the
nucleation rates for both processes of condensation and
boiling. It contains two parameters, δ∞ and l∞, specifying
in the considered here application the dependence of the
surface tension of a crystallite on the degree of deviation
from equilibrium or on the size of the critical cluster.

In the present paper, we propose estimates of the val-
ues of these parameters both for crystallization caused by
variations of temperature and by variation of pressure.
These relations can be easily utilized to determine the
dependence of the steady state nucleation rate either on
temperature or on pressure accounting appropriately for a
curvature dependence of the surface tension. Such
approach leads to a description of nucleation rate data
with a much higher precision than when the capillarity
approximation is employed or the curvature dependence
of the surface tension is described by the Tolman equa-
tion in its original version.
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